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Abstract
We have reinvestigated the magnetic properties of Zn2VO(PO4)2 by means of
magnetic susceptibility χ(T ) and specific heat Cp(T ) measurements performed
on polycrystalline samples. At high temperatures χ(T ) follows a Curie–Weiss
law with the effective moment expected for a V4+, S = 1/2 ion, while a
rounded maximum in χ(T ) at 6.95 K and a hump in Cp(T ) around 4.5 K
indicate the onset of antiferromagnetic correlations at low temperatures. Finally,
a kink in χ(T ) and a well defined mean-field anomaly in Cp(T ) at TN = 3.7 K
evidence a transition into an ordered antiferromagnetic state. A comparison
of χ(T ) and of the magnetic contribution Cmagn

p (T ) to the specific heat with
theoretical predictions indicates that the magnetic lattice of this compound
corresponds to a square lattice rather than the spin chain proposed in an earlier
report. The results of quantum Monte Carlo calculations for a square lattice
agree very well down to TN with Cmagn

p (T ) extracted from our experiment,
while finite size calculations overestimate the specific heat in the region of the
maximum in Cmagn

p (T ).

1. Introduction

Low dimensional, low spin systems are currently of strong interest because enhanced quantum
fluctuations lead to unusual ground states and unusual low temperature properties. One of the
cases most studied in the past few years is that of an S = 1/2 Heisenberg antiferromagnetic
square lattice, because of its relevance for high temperature superconductivity (HTSC) in
cuprates. While a huge amount of data have been accumulated for these compounds (see
e.g. [1]), their very large in-plane exchange J2D > 1000 K prevents the investigation of some
properties, e.g., a detailed analysis of the magnetic specific heat at temperatures of the order of
J (because, at those temperatures, the total specific heat is completely dominated by the phonon
contribution), or the properties in an applied field H of the order of J (since the corresponding
fields are one order of magnitude larger than the available laboratory fields). Thus finding
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examples of square lattice systems with a low interaction strength of the order of 10 K is still
of strong interest.

In the early days it was argued [2] that the quantum fluctuations lead to the formation of
a new disordered, spin liquid state in a square lattice. However it is now widely accepted that
at T = 0 K they order in a Néel state [1]. Theoretical studies suggest that by introducing
a frustrating diagonal antiferromagnetic exchange J2, one might recover a spin liquid state at
some critical values of the frustration parameter α = J2/J1 ≈ 0.5. While the corresponding
theoretical model, the J1–J2 model, has been widely investigated [3], experimental realizations
are very scarce, currently restricted to two families of compounds, Li2VOXO4 (X = Si,
Ge) [4–6] and AA′VO(PO4)2 (A, A′ = Pb, Zn, Sr, Ba) [6, 7], none of them being in the
interesting spin liquid range. Therefore there is currently a strong interest in finding new
candidates for the frustrated square lattice spin system. In a search for such systems, our
attention was drawn to Zn2VO(PO4)2 [8]. An earlier investigation proposed it to be a spin
chain system [9], but after analysing its structure and possible superexchange paths, we instead
suspected this compound to be a square lattice, with a possible frustrating diagonal exchange of
the appropriate strength. We therefore synthesized Zn2VO(PO4)2 and investigated its magnetic
properties.

2. Experimental procedure

Polycrystalline Zn2VO(PO4)2 was prepared by solid state reaction between Zn2P2O7 and
VO2 in a flowing argon atmosphere at 900 ◦C. Zn2P2O7 was, in turn, obtained by reacting
NH4H2PO4 with ZnO in air at 600 ◦C. X-ray diffraction data obtained from the polycrystalline
powder indicated that the sample was single phase within the limits of x-ray diffraction.
Magnetization and specific heat measurements were made using commercial equipment: a
magnetic property measurement system (MPMS) and a physical property measurement system
(PPMS), respectively, both from Quantum Design.

3. Results and discussion

3.1. Structural aspects

The existence of Zn2VO(PO4)2 was first reported by Lii et al [8]. This material crystallizes in
the tetragonal space group I 4cm with cell parameters a = 8.9227(13) Å and c = 9.039(3) Å.
Our view of this structure is that it is formed of VO5 square pyramids connected by ZnO5 square
pyramids and PO4 tetrahedra forming layers perpendicular to the crystallographic c-axis. One
such layer is shown in figure 1. The VO5 square pyramid is regular with the vanadium ion
displaced from the basal plane towards the apex oxygen. The V–O1 bond length is 2.02 Å, O1
being one of the four equivalent oxygen ions forming the base of the pyramid. The distance
from V4+ to the apex oxygen (O2) is much shorter, only 1.57 Å, and indicates the formation
of a vanadyl double bond. As will be discussed later, the orientation of this vanadyl bond is
very important for the magnetic properties. Within a layer, the nearest neighbour (NN) VO5

pyramids are connected by corner-sharing PO4 tetrahedra while next nearest neighbour (NNN)
VO5 pyramids are connected by two ZnO5 square pyramids which share an edge to form a
dimer. In a given layer, the VO5 pyramids and the PO4 tetrahedra point in the same direction,
while the ZnO5 pyramids point in the opposite direction. All the V4+ ions are arranged along
a line parallel to the c-axis (figure 2).

In the earlier reports [8, 9] Zn2VO(PO4)2 was described as formed of one-dimensional
chains of VO6 octahedra, linked by corners along the c-direction. Indeed the shortest V–V
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Figure 1. Structure of Zn2VO(PO4)2 projected along [001] showing a single layer of VO5 square
pyramids (dark grey), and their connectivity through PO4 tetrahedra (light grey) and ZnO5 square
pyramids (light grey squares). J1 and J2 indicate the possible intralayer exchange interactions
between magnetic V4+ ions.

2.95 A°

c

a2
a1

Figure 2. Structure of Zn2VO(PO4)2 projected perpendicular to the [001] direction showing the
arrangement of VO5 square pyramids along the c-axis. The same shades as in figure 1 are used with
the exception that the ZnO5 pyramids now appear in a medium grey tone. The distance between the
vanadium ions and the trans-oxygen ion (see the text) is explicitly shown (2.95 Å).

distance (4.52 Å) occurs along the c-axis while the nearest V–V neighbour distance within
a layer (6.31 Å) is significantly larger. Thus taking only V–V distances into account, the
description of the structure in terms of vanadium chains seems to be reasonable. However,
this approach completely ignores the difference in bonding strengths arising from the different
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V–O distances, and the orientation of the occupied d orbital, which are crucial for the magnetic
exchange. From a bonding point of view the V–O2 bond length involving the O2 ion located
opposite to the vanadyl bond (the so-called trans-oxygen) is huge, 2.95 Å (see figure 2), too
large for this O2 to be considered as effectively bonded to the vanadium ion. In vanadium
oxides an oxygen ion is usually considered as bonded to vanadium when the bond length is
smaller than 2.6 Å [10–12]. Thus taking into account the large difference in V–O distance
between the vanadyl and the trans-oxygen ions, the appropriate V coordination is square
pyramidal, and not octahedral.

It is now well established that for V4+ in both the square pyramidal and such an octahedral
coordination, the crystal field splits the low lying triplet t2g such that the lowest lying level
is dxy , which lies perpendicular to the vanadyl bond. In Zn2VO(PO4)2, this orbital is also
perpendicular to the c-axis, and furthermore the distance to the trans-oxygen ion, which would
have to transfer the magnetic exchange along the c-direction, is large. Then one expects the
exchange along the c-direction to be very weak. On the other hand, the dxy orbital allows an
obvious exchange path through the PO4 tetrahedra to the next neighbour in the plane. In the past
few years it has been shown that magnetic exchange through such PO4 tetrahedra can be quite
strong [13–16]. If this NN exchange J1 were to be dominant, the spin system would correspond
to a square lattice system. But the dxy orbital would also allow a NNN superexchange J2

through the ZnO5 pyramids. From empirical considerations, it is not possible to anticipate
the relation between J1 and J2 on the basis of structural considerations and thus we decided
to experimentally investigate the magnetic properties of this material in order to identify its
magnetic lattice.

3.2. Magnetic susceptibility results

Figure 3 shows the temperature dependence of the magnetic susceptibility χ(T ) measured
in two different fields, H = 1000 Oe and H = 1 × 104 Oe. χ(T ) presents a behaviour
typical of a low dimensional spin system, with a Curie–Weiss-like increase below room
temperature, ending in a broad maximum at T χ

max = 6.95 K which corresponds to the onset
of antiferromagnetic short range correlations. A small kink in χ(T ) at TN = 3.75 K points to a
transition to a three-dimensional antiferromagnetic ordered state. The increase of χ(T ) below
TN when the field is raised from 1000 Oe to 1×104 Oe indicates that a spin-flop-like transition
takes place at some field between these values. This behaviour is typical for antiferromagnetic
order in a low dimensional system with a weak spin anisotropy [17].

In order to obtain a quantitative estimate of the strength and geometry of the magnetic
interactions present in Zn2VO(PO4)2 we successively fitted our polycrystalline χ(T ) data with
different theoretical models. We first fitted the high temperature data (above 34 K) with the
simple Curie–Weiss model (equation (1)).

χ(T ) = χ0 + C

T − θCW
(1)

where C = NAµ2
eff/3kB is the Curie constant, θCW is the paramagnetic Curie–Weiss

temperature and χ0 is a small temperature-independent susceptibility. We obtained µeff =
1.68(1) µB, θCW = −6.38(6) K and χ0 = −7 × 10−5 emu mol−1. The values indicated in
parentheses are the standard deviations of the fitting procedure. The differences between the
values for H = 1000 Oe and H = 1 × 104 Oe fields are of the same order as the standard
deviation in each fitting. The result of this fitting procedure is shown in the inset in the upper
part of figure 3 as a 1/χ(T ) versus T plot (continuous line). The value of µeff agrees quite well
with the spin only value expected for a V4+ ion, 1.73 µB. The small and negative Curie–Weiss
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Figure 3. Upper part: magnetic susceptibility data for Zn2VO(PO4)2, measured in an applied
magnetic field of 1000 Oe (open squares) and 1 × 104 Oe (open circles) together with the fits with
the theoretical model [18] for a 1D spin chain (continuous line) and a high temperature expansion
for a 2D square lattice (dashed line; see the text). Inset: 1/χ(T ) versus T plot of the χ(T ) data
at 1 × 104 Oe (open circles) and the result of the Curie–Weiss fit (continuous line). Lower part:
absolute difference between the fitting curves for the 1D (continuous line) and 2D (dashed line)
models and the experimental χ(T ).

temperature (θCW) indicates dominant weak antiferromagnetic exchange, and the small
T -independent contribution can be attributed to Van Vleck and diamagnetic contributions.

Next we fitted the χ(T ) data with the theoretical predictions for an S = 1/2 Heisenberg
spin chain [18] and an S = 1/2 Heisenberg spin square lattice. The susceptibility of an S = 1/2
Heisenberg spin chain is known for all temperatures with a very high precision from numerical
calculations [19–21]. For our fit we used the simple rational function suggested by Feyerherm
et al [18], given by equation (2):

χ(T ) = C

T
F

(
J

kBT

)
(2)

with

F(x) = 1 + 0.085 16x + 0.233 51x2

1 + 0.733 82x + 0.136 96x2 + 0.535 68x3
(3)

where x = J/kBT and C is the Curie constant defined previously. In contrast, the susceptibility
of an S = 1/2 Heisenberg spin square lattice is less precisely known, especially at low
temperatures (T < J/kB). For this fit we used the high temperature expansion series for
1/χ(T ) up to the fourth order, as given in equation (4):

1

T χ(T )
= 1

C

(
1 + x + x2

2
+ x3

6

)
. (4)

We found that this function reproduces the results of Monte Carlo calculations [22, 23]1

very well down to surprisingly low temperatures. That the high temperature expansion

1 Which seem to be currently the most accurate predictions for the susceptibility of a square lattice.
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series of 1/T χ(T ) up to the fourth term is an excellent approximation for many simple
antiferromagnetic spin lattices has already been recognized in the literature [24].

For both fits we included a T -independent χ0. The results of these fits are shown in
figure 3. In both cases we fitted the data from 400 K down to 5 K. We found that both models
reproduce the experimental data very well. However, a detailed analysis (lower part of figure 3)
of the differences between the fitting curves and the data clearly shows that the model for the 2D
square lattice fits the data systematically better than the model for the 1D chain. This suggests
that χ(T ) for Zn2VO(PO4)2 is better described by the behaviour expected for a square lattice
Heisenberg antiferromagnet. Nevertheless, the differences between the fitting models are not
large and thus this analysis does not allow a clear identification of the magnetic lattice of this
compound. As shown later, the magnetic specific heat proves that the square lattice is the
appropriate model.

The fit parameters are rather similar for the two models with J1D = 11.48(1) K,
µeff = 1.64(2) µB and χ0 = 1.6(2)×10−4 emu mol−1 for the spin chain model (equations (2)
and (3)) and J2D = 7.7(1) K, µeff = 1.70(2) µB and χ0 = 2.0(5) × 10−4 emu mol−1 for the
square lattice model (equation (4)). While the two fits give comparable values for µeff and χ0,
the value of the exchange parameter is larger for the chain than for the square lattice, in order
to compensate for the lower number of interacting neighbours.

For the square lattice, we made a further fit which included a diagonal exchange J2. For
this fit we used the high temperature expansion series given by Rosner et al [25]. This fit results
in a very low J2 value, of the order of 0.2 K, while J1 increases only slightly to J1 = 7.91 K,
compared to the fit without diagonal exchange (J2D = 7.7(1) K). This indicates that for
Zn2VO(PO4)2, the diagonal exchange, and thus the frustration, is very weak and hence not
relevant.

3.3. Specific heat results

The temperature dependence of the specific heat of Zn2VO(PO4)2 in the temperature range
2 K < T < 18 K is presented in figure 4. The data at higher temperatures are not shown
because they are completely dominated by the contribution from the phonons and thus not
relevant for discussing the magnetic properties. The magnetic part becomes evident below
10 K as an increase of Cp(T ) with decreasing T . This increase leads to a broad hump at
around 4.5 K which is related to the onset of low dimensional, short range spin correlations.
At TN = 3.75 K a very well defined mean-field-like transition marks the onset of long range
antiferromagnetic order. The general dependence on temperature that we observed is rather
similar to that reported by Bayi et al [9], but, to our surprise, our absolute values are larger
by a factor of two for the whole temperature range shown in [9]. As we show later on, a
quantitative comparison with theoretical models gives a very strong indication that the absolute
values reported by Bayi et al cannot be correct, while our data match very well the theoretical
results for a square lattice. Furthermore, the TN we observed in our sample is significantly
larger than the value TN = 3.3 K reported in the previous work [9]; the size of the anomaly is
also larger (even if the previous data are scaled up in order to match our results), and is much
sharper. These findings point to a better quality of our sample.

In order to get a quantitative estimate of the magnetic contribution Cmagn
p to the specific

heat, the phonon part CPhon
p was subtracted from the measured total specific heat Cp(T ).

The specific heat of the phonons was estimated by fitting Cp(T ) at higher temperatures
(12 K < T < 200 K) with a sum of Debye contributions. Since the magnetic part cannot be
neglected for T < 30 K, it was accounted for by a term A/T 2 with A being a fitting parameter.
Such a term corresponds to the lowest order in J/kBT in the high temperature expansion series
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Figure 4. Specific heat data for Zn2VO(PO4)2. The total specific heat (open circles), phonon
contribution (solid line) and magnetic contribution (dashed line) are shown separately.

for the specific heat of low dimensional systems. The fit was performed down to 12 K and the
final fitting function that we used is given by equation (5) (with R = 8.314 J mol−1 K−1 the
gas constant):

Cp(T ) = A

T 2
+ 9R

5∑
n=1

cn

(
T

θDn

)3 ∫ θDn
T

0

x4ex

(ex − 1)2
dx . (5)

Using the resulting Debye temperatures, we extrapolated CPhon
p (T ) down to 2 K and

subtracted it from the measured total specific heat, thus obtaining an estimate of Cmagn
p (T ).

Both CPhon
p (T ) and Cmagn

p (T ) are shown in figure 4. As can be seen, CPhon
p (T ) amounts only

to a few % of the total specific heat at T = 4.5 K, the temperature of the hump in Cp(T ),
while it reaches 50% at 10 K. Accordingly, the absolute value of Cmagn

p (T ) at the maximum in
the hump is completely insensitive to the estimate of CPhon

p (T ), while above 10 K, Cmagn
p (T )

may be sensitively affected by the estimate of CPhon
p (T ). From this fit, we obtained a further

estimate of J2D from the value of A, since for a square lattice A = 3R J 2
2D/8. We found

A = 171 J K mol−1 and therefore J2D � 7.41 K in excellent agreement with the value obtained
from the fits of χ(T ) for a 2D square lattice.

We have included in figure 5 the theoretical predictions for Cmagn
p (T ) for an S = 1/2 spin

chain and a square lattice. As for the susceptibility, the former is known up to a high precision
from numerical calculations [21]. We used the polynomial approximation of Johnston et al
[24], and calculated Cmagn

p (T ) for the exchange value J1D = 11.4 K obtained from the fit of
the susceptibility.

In contrast, the theoretical predictions for Cmagn
p (T ) for a square lattice became

increasingly unreliable when the temperature decreases below J2D. Thus finite size
calculations predict a maximum value Cmagn

p (Tmax) = 0.53R while quantum Monte Carlo
calculations [17, 22, 26] and other approaches combining different techniques [27] converge
to a value Cmagn

p (Tmax) = 0.44R, smaller by 17%. For calculating Cmagn
p (T ) for the square

lattice we used the recent results of Hoffmann et al [28], which were provided to us in tabular
form by Uhrig. We scaled these results with J2D = 7.4 K, obtained from the HTSE fit of the
susceptibility. This theoretical result for the square lattice fits very well to the experimental
data from high temperatures down to TN. In contrast, the theoretical results for the S = 1/2
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Figure 5. Magnetic contribution to the specific heat of Zn2VO(PO4)2 and comparison with
theoretical models. 1D corresponds to the result expected for an S = 1/2 AF chain, 2D-SCA
is the result obtained by scaling the calculations of Hoffmann et al [28], 2D-INT, 2D-QMC and 2D-
FSC mark the positions of the maximum in C

magn
p (T ) determined by an interpolative method [27],

quantum Monte Carlo calculations [17, 22, 26] and finite size calculations [3] respectively.

chain deviate considerably from the experimental data at all temperatures. This discrepancy
that we observed for the chain cannot be removed by adapting J1D, because the magnitude
of the specific heat at the maximum is independent of J1D, and is significantly lower than the
experimental results. Thus a comparison of the Cmagn

p value at the maximum, which is rather
insensitive to the phonon contribution, already gives strong evidence for a square lattice instead
of a chain. Furthermore, our comparison shows that for a square lattice, finite size calculations
overestimate Cmagn

p (T ) in the range of T corresponding to the maximum, while Monte Carlo
and combined approaches seem to be rather accurate.

In summary, this comparison of experimental and theoretical results for the specific heat
gives conclusive evidence that Zn2VO(PO4)2 is a square lattice, not a one-dimensional chain.
Since in a perfect two-dimensional square lattice system the transition towards a long range
ordered state takes place only at T = 0 K [1], the existence of a finite TN implies the presence
of a weak interaction (J⊥) perpendicular to the layers. From the ratio TN/J2D one can estimate
a value for J⊥. Using the theoretical results of Siurakshina et al [29] and our experimental value
TN/J2D = 0.51 we obtained a ratio J⊥/J2D � 0.03 and thus J⊥ � 0.22 K. This comparatively
small value indicates that the system is quite close to a 2D lattice.

4. Conclusions

Polycrystalline Zn2VO(PO4)2 was prepared and characterized as regards its magnetic
properties. The ambiguity of Zn2VO(PO4)2 being either a spin chain or a square lattice has
been sorted out by analysing the combined data on the magnetic susceptibility and specific heat.
The nature of the spin lattice in Zn2VO(PO4)2 was found to be quasi-two-dimensional. The
magnetic structure consists of S = 1/2, V4+ ions on a square lattice with an antiferromagnetic
NN exchange of about 7.4 K, and a much weaker interplane exchange interaction of the order of
0.2 K. We looked for the strength of a possible diagonal exchange between NNN in the plane,
but found it also to be much weaker than the NN exchange. The predictions of quantum Monte
Carlo and interpolative methods for the magnetic specific heat, Cmagn

p , of an antiferromagnetic
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Heisenberg square lattice agree well with our experimental results, while finite size calculations
overestimate this contribution in the region of the maximum in Cmagn

p (T ).
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